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A&r&-Solution of the coupkd velocity and temperature fields associated with the condensation of a 
single or two-phase bubble train is used to obtain the bubbles’ radii as a function of time (or height), 
frequency, temperature driving force and inerts concentration. 

The reliability of the solution procedure is demonstrated by its convergence at zero frequency to other 
solutions of single bubble condensation and by the good agreement of the calculated results with experimen- 

tal data. 

NOMENCLATURE 

matrix; 
constant ; 
constant ; 
constant ; 
constant : 
radial distance vector ; 
constant ; 
constant ; 
constant ; 
constant ; 
center to center distances between 
bubbles ; 
constant ; 
wake velocity factor ; 
bubble frequency ; 
Fourier modules (at/I@ ; 
intensity vector ; 
Jacob no. [pI Cp, (T* - T, ),‘(p,R)] ; 
distance between edge of line element 
and point in field ; 

4 
t 

G,, 

P6clet number (= DVF,/a) ; 
point outside bubbles envelope ; 
radial coordinate ; 
radius of bubble ; 
radius of contact area of wake and 
tailing bubble ; 
temperature ; 
approach temperature ; 
saturation temperature, corrected for 
hydrostatic pressure ; 
time ; 
time to final condensation ; 
velocity of rise of single bubble in an 
unbounded media ; 
frequency-dependent velocity of rise ; 
radial velocity component ; 
axial velocity component ; 
dimensionless axial coordinate (z/D) ; 
dimensionless coordinate (= r!D) : 
axial coordinate. 

velocity factor ; 
length of line element ; 
index of reference element ; 
number of bubbles in a train ; 
number of line elements ; 
body point ; 
Peclet number (= 2RoV: ‘a); 

Greek letters 
thermal diffusivity, continuous phase : 

Fj dimensionless bubble radius (&Xc) ; 

y:” 
dimensionless bubble radius (R,/&,); 
angular coordinate ; 

8, dimensional temperature ( = (T - T&),’ 
(T* - T,)): 
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density ; 
intensity of line element : 
potential function ; 
dimensionless potential function, equa- 
tions (20)-(21) ; 
stream function ; 
dimensionless stream function, equa- 
tions (20)-(21); 
transformed dimensionless stream 
function ; 
constant ; 
constant ; 
Ja Pet Fo. 

Subscripts 
lower bound (for frequency) ; initial 
(radius) ; 

leading bubble ; 
tailing bubble ; 
infinity (approach or radial) ; 
complete contact (angle); 
final ; 
index, no. of element: number of 
bubble ; 
index, body point ; 
liquid, continuous phase ; 
condensed bubble, liquid ; 
a point in flow field ; 
mth line element ; 
relation between element m and body 
point p; 

number of elements, total ; 
body point : 
radial ; 
separation (angle) ; 
uncondensed bubble : vapor ; 
wake ; wall ; 
axial. 

Superscripts 
F, frequency dependence ; 
0, edge of line element at L = 0; 
L. edge of line element at L = L. 

1. INTRODUCTION 

BUBBLE trains, in which the bubbles diminish in 
size while in motion through a liquid, are 
encountered in numerous engineering applica- 
tions involving heat and mass transfer. Of 
particular interest is the study of bubble con- 
densation in two and three phase systems, 
associated with the design of efficient exchangers 
capable of heat recovery with small temperature 
driving forces. These direct contact heat ex- 
changers provide the advantages of smaller flow 
rates of the transfer fluid, convenient separation 
of the fluids and very high heat-transfer co- 
efficients. This mode of operation is applicable 
to any pair of fluid systems, provided a suitable 
immiscible transfer fluid is chosen. 

Unlike condensation in a single-component 
system (say, steam in water), where the con- 
densing vapor merges with the surrounding 
continuous liquid, the condensed vapor in these 
immiscible systems (say, pentane or Freon in 
water) remains within the confines of the bubble 
wall. This sytem thus consists of the vapor and 
two liquid phases. For ease of reference and in 
order to avoid confusion when non-condens- 
ables are present in the vapor, we denote these 
bubbles in the two-fluid system as “two-phase 
bubbles”. By analogy, the bubble in a single- 
component system is denoted as a “single- 
phase bubble”. 

Practically all past studies relate to bubble 
growth and collapse of a single bubble and with 
only a few exceptions these studies are limited 
to the radial motion of a stagnant bubble. 

The first exact numerical solution for bubble 
collapse in a single-component system in- 
cluding the effects of the translatory motion of 
the bubble, is due to Wittke and Chao [l]. 
Following an earlier experimental study [2] a 
general numerical solution for a “two-phase 
bubble” was presented by Isenberg and Sideman 
[3]. For a “single-phase” bubble this solution 
degenerates to the previous solution [ 11. An 
approximate analytical quasi-steady state solu- 
tion for the condensation of single and two- 
phase bubbles, including the effects of con- 



DIRECT CONTACT HEAT TRANSFER 2307 

centration distribution of the non-condensables 
within the bubble, was recently presented [4,5]. 
The calculated results are in good agreement 
with the experimental work of lsenberg [3] 
and Moalem 143. 

The present study deals with a train of bubbles 
continuously originating at the same source. 
Based on a simphfied energy balance, an 
approximate solution for the collapse rate of a 
bubble in a bubble train was recently presented 
[63. The solution was obtained by treating one 
bubble as representing the bubbles in the train, 
and calculating the collapse rate for the fre- 
quency-dependent rise velocity and the tempera- 
ture driving force along the bubble’s path. 

While the flow field around a single unbounded 
bubble can be solved independent of the tem- 
perature field, the bubble train ,is a continuous, 
infinite process, and requires a simultaneous 
solution of the temperature and flow fields. An 
iterative procedure is thus required: a bubble 
train is assumed and the flow field is solved. 
The ensuing solution of the energy equation 
leads through the collapse rate, to a new con- 
figuration of the bubble train. 

The first part of this work is therefore devoted 
to the solution of the flow field around a specific 
bubble train of decreasing radii (Fig 1). The 
uncondensed bubble is at the bottom of the 
column while the smallest bubble, at a finite 
final condensation stage, is leaving the top. 
Bubbles at intermediate condensation stages 
are equally spaced in between these two posi- 
tions. Hick [7J and Basset [8] presented a 
solution for potential flow around two identical 
solid spheres and Michael f9] solved for the 
flow around a row of identical spheres. Herman 
[ 101 and, more recently, Isenberg and Sideman 
[ 111 presented solutions, for potential flow 
around two vertically adjacent bubbles of 
different radii, including radial motion of the 
interface. Extensions of solutions of the ensuing 
Newmann problem by the method of successive 
approximations (negating harmonics on the 
incompatible boundary conditions) to a multi- 
bubble column is quite tedious and complicated. 

FIG. 1. Schematic pmentation of a bubble train. 

A new technique was utiI&ed here which is both 
faster and allows mapping of the whole flow 
field. 

2.THEFLowFmdD 

2.1 The bubble train 
For a given bubble frequency F and given 

temperature of the surrounding liquid, the 
bubble tram (Fig. 1) is defined, subject to the 
following simplifications: (a) The instance of 
any bubble detachment from the origin is taken 
as zero-time. (b) The cohu.ur~ consists of all the 
bubbles present at time-zero, including the 
highest bubble at its fma.I condensation stage. 
(c) The system is at periodic steady state, i.e. it 
repeats itself at time intervals of 1./F, (d) AI1 
incoming bubbles move through the same path 
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and reach the identical final condensation stage 
(complete or partial condensation, depending 
on the concentration of non-condensables). 

2.2 Method of solution 
For the purpose of the analysis, the bubble 

train is assumed to be stationary while the fluid 
flows around it. This is permissible in view of 
the simplifying assumption that the solution is 
applicable to a periodic steady state. In other 
words, the system is frozen at zero-time and 
solved as a stationary system. 

The potential flow model, adequately estab- 
lished for flow around single gas bubbles [ 111, 
is extended to the flow configuration at hand. 
This is consistent with the recent study of Ishii 
and Johnson [12] on flow in bubble swarms. 
Thus, the solution is based on finding the proper 
combination of hydrodynamic doublets (sources, 
sinks) and dipoles which, combined with the 
linear approach velocity Uz yields the velocity 
field in terms of the potential and stream func- 
tions around the axially symmetrical bubble. 

It can readily be shown that the stream and 
potential functions for a line element i, of 
length L, located on the axis of symmetry Z, 
are given by [ 131 : 

&=$K!:-KEI 

and 

+i = 21, KL,( 1 - cos vL) 

K$(l - ‘COS 70) 
(2) 

Fro. 2. Construction of streamlines from hydrodynamic 
line sources. 

The shape of the column is determined by the 
distance between the hydrodynamic elements 
and their intensities under the constraints that 
the sum of the intensities is zero and that the 
sum of the overall stream function is nullified 
on the interfaces. 

Consider a succession of n line elements, each 
of length L+ but of different intensity, touching 
each other head to tail on the z coordinate. 
The stream function at “body point” P on 
the interface, is obtained by summing the 
contributions due to all n elements and the 
uniform flow field. Hence, 

where vi denotes the intensity of the element per 
unit length. Kz and Kk are the distances from 
points z = 0 and z = L on the element i, at 

K/j,] - +$ UF r: z-0 (4) 

angles y” and y”, respectively, to a point located i=l 

at a radial distance r from the z coordinate 
(Fig. 2). where rP is the radial distance from the line of 

The contribution of an unperturbed uniform symmetry to point P. Thus, for n elements and n 
flow field UF, to the stream function at this interfacial body points we obtain the following 
point is given by n by n matrix: 

IL “: z-2 1 uy . (3) Al = B (5) 
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where 

A = [Aij] =(K$-ICE] &;i,j= 1,2, . . . n 

(6) 

The solution of the matrix under the constraint 

i vi Li = 0 yields the intensity vector I which 
i=l 

is consequently used to calculate the stream and 
potential functions at any point Q in the field. 
These are given by: 

n 

*Q = c E [K& - KiLp] - _r v’, 13p (7) 

i=l 

” 

4Q = c cln K$ - ~0s r”> 
4n K&(1 - cos 7’) 

- VF,z(8) 

i=l 

where ro is the radial distance from the line of 
symmetry (z axis) to point Q, K$ and KtQ 
are the respective distances between the 
two edges of line element i and point Q, and 
- VGz is the contribution of the unperturbed 
uniform flow field to the potential function. 

2.3 The governing parameters 
Solution of equations (7) and (8) requires the 

knowledge of the following interrelated 
parameters. 

7’he approach uelocity. Single bubble studies 
[14] show that the velocity of rise of bubbles, 
O-2-08 cm dia, is independent of their diameter. 
Assuming that the same holds true for bubbles in 
a train, the velocity of rise of the bubbles in the 
column is taken to depend only on the inter- 
action between successive bubbles, hence on 
the frequency of bubble production, but to be 
constant at each frequency. 

With reference to Fig 3, the frequency 
dependent rise velocity of a chain of bubbles, 

Frequency. 6 I h 
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FIG. 3. Effect of frequency on rise velocity. 

or the approach velocity, is given by [6, 131: 

R’2 
- r$l - F;) (9) 

where r, is the radius of the projected contact 
area between the wake and the rear bubble of 
radius R, ( = RN) ; F, is the fraction of velocity 
decrease in the wake region, given by [ 15) : 

VF - u 
F,r m 

VF 
l” u 01 (10) 

OD 

where V, is the forward velocity in the wake, 
corrected for internal circulation within the 
wake. The numerical value for V,, the free 
rise velocity of a singk bubble, is taken as that 
corresponding to the lowest bubbk in the 
column, R, consistent with earlier studies 
[3,4] indicating that bubbk collapse does not 
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affect the rise velocity. It is noted however, that solid spheres [17]. The approach angle yE is 
at large temperature driving forces, hence determined with reference to the wake of the 
higher collapse rates, the free rise velocity of the preceding bubble and the distance between 
larger bubbles in the earliest condensation the bubbles. Between these two angles, the 
stages is not quite constant. Also, the free rise enveloping stream function $ = 0 coincides 
velocity is not constant for condensation in with the walls of the bubble. Since the angles 
viscous media, such as pentane in aqueous vary with each system, they are determined 
glycerine solutions. separately and treated as input data. 

It is noteworthy that the bubbles in an 
ascending chain are not accelerating with 
respect to a fixed coordinate system. Unlike 
the pairs of bubbles in which the rear bubble 
accelerates, collides and coalesces with the 
leading bubble [16], no coalescence was noted 
with pentane bubble trains condensing in 
pentane, distilled water or aqueous glycerine 
solutions. 

The radii of the bubbles in the column, Ri, 
are assumed for the fast iteration, while for the 
next iterations the radii resulting from the 
previous iteration are used. 

2.4 The calculated jlow field 

The distance between the centers. The relation- 
ship between the. frequency and the distance 
between the bubbles js particularly useful since it 
is directly associated with the final condensation 
time t,. For a constant U$, calculated by 
equation (9), the distance between two con- 
secutive bubbles is given by: 

The system of equations (Q-0-j) was solved 
by utilizing Gause elimination technique. The 
input data consisted of R, F, CJ, (hence 
V”,), yE, ya, n, Land R,. The number and length 
of the line elements varied with Ri, depending 
on the length of the envelope (Y = 0) between 
ye and ys of each bubble. Double precision 
techniques were employed utilizing a PLjl 
compiler. The program was checked by com- 
puting the limiting case of a single bubble and 
comparing with the analytical solutions, 
whereby : 

while the distance between the “initial” and 
“final” bubbles, of radius R0 and Rr respectively, 
in a bubble train containing N bubbles, is given 
by: 

or 

tC = (N - 1)/F. (13) 

The contact and separation angles. It is 
reasonabie to expect that the contact and sepa- 
ration angles depend upon the distance between 
the bubbles For truly potential flow, these 
angles are 0 and n, respectively, independent of 
the distance. For viscous systems, the separa- 
tion angle ys can be determined, at least ap- 
proximately, by the well-known Reynolds num- 
ber dependent correlations for flow around 

-&= U,R [I +;(;)‘1 cosy (14) 

sin2 y. (15) 

Figure 4 represents the calculated axially sym- 
metrical flow fields around a given bubble 
train. 

Whereas non-dimensionalizing equations ( 14) 
and (15) yields a ++#I network invariant in 
I?, the $-c$ net of equations (7) and (8) for the 
bubble train varies with Rt as well as with D. 
Thus, a new network must be computed for 
each change in Ri or D. Furthermore, the 
inverse transformation from I@ to r-z in the 
single bubble case is relatively simple (elimina- 
tion of y from equations (14) and (15) yields a 
9th order equation in r which is routinely solved 
[ 181). However, the comparable transformation 
to r-z from the &IL plane utilizing equations 
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Axlol cnordinote, I, cm 

FIG. 4. Calculated potential and streamlines of a given bubble train. 

(7) and (8) is quite cumbersome, since there is 
no way to eliminate one of the unknowns. 
Moreover, values of d+# and their derivatives 
are needed for each of the iterations (see below) 
required in the solution of the energy equation. A 
special interpolation program, utilizing the 
Newton-Raphson procedure and the Fibbo- 
nachi search technique was used to map the 
+$ plane, and an iterative procedure to re- 
map the r-z plane was adopted [ 131. 

3. THE TEMPERATURE FIELD 

3.1 General 
The solution of the temperature field requires 

that a bubble tram under given conditions be 
assumed, calculating the flow and temperature 
fields and, consequently, the heat fluxes and the 
corresponding collapse rates. A new tram is then 
calculated and the iterative procedure is con- 
tinued until the bubble train corresponds to that 
calculated by means of the heat fluxes. The 
results can then be presented as plots of bubble 
radii versus time (or height), with the frequencies 
and temperature driving forces as parameters. 

3.2 7Ite mathematical filation 
The steady state energy equation, in cyclin- 

drical coordinates, for an axially symmetrical 
case, is given by 

The solution of equation (16) requires the 
explicit knowledge of the velocity components. 
These may be taken from the solution for the 
potential flow field However, no solution is 
available at present for the comparable viscous 
flow, which is encountered in the condensation 
of two-phase bubbles. Following earlier single 
bubble studies [3, 41, we introdum here the 
velocity factor 

k v = 025Pr_* (17) 

designed to modify the convective terms so that 
the resulting solution of the energy equation 
would correspond to the actual viscous con- 
vective terms. Note that k, = 1 for truly poten- 
tial flow. The intrinsic merit of this approach 
is that it allows for a general solution of the 
energy equation for both potential and modified- 
potential flows, and circumvents the need for 
explicit velocity terms in the viscous flow field 

Utilizing the center-to-center distance between 
the bubble& D, as the characteristic length, we 
define : 

Y= r/D; X = z/D; J-j/U',' 

@ = &‘U;D; Y = $lUf;,D2; 

Pe = UF,Dh; A= JY2; 

B=2u,lUF,; C= JPek, 
where 

W-0 
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For large P&cl& numbers ( > lOOO), the tangential 
conduction, in the 4 direction, is negligible 
compared with the convective term. To obtain 
better accuracy near the bubble, and reduce 
calculations away from it, we introduce a step 
transformation : 

- YP, for 0 < Y, S Yy,r 

Y = I - Y,, - tJYu, - !Fp,,)< for Yp, > Y,, (20) 

where Yt, is the value of Y, at the end of the 
linear zone and 5 and c are arbitrarily chosen 
values. Equation (16) becomes : 

a28 
A’alp: 

a0 a9 
+Btd'p,+Cs=O (21) 

where 

0 = *-*a. 
T* - T, ’ 

Bt = . (22) 

It is assumed that the heat transfer between the 
bubbles and the continuous phase is essentially 
done across the enveloping stream line tj = 0, 
coinciding with the wall of bubbles. Thus ; 

The values thus obtained are then used again 
as the initial radii for the next iteration and the 
process is continued until the collapse rate 
corresponds to the decrease in bubble size in 
the train. 

An outline of the general iteration procedure 
is given in Appendix B. 

@=@o, 6=0 3.4 E@ect of non-condensables 
Y= 00, &MY = 0 

(23) 
Y = 0, 8, = 1 on the interface 

8 0 = 0 between bubbles 

where @,, is the upper limit of the Wield, and 
8,, is the value of 8 on the inner stream line 
Y = 0. At very high frequencies, as D N- 2Ri, 
it may be physically meaningful to assume that 
the space between the bubbles in the column 
contains fluid which is essentially at the satura- 
tion temperature, i.e. 6 = 1 on Y = 0. 

In deriving equations (23) and on, it has been 
assumed that the system consists of pure vapor. 
and condensation proceeds at T*. the vapor 
saturation temperature, corresponding to the 
system pressure. However, inert non-condens- 
ables (usually air) are present in practically 
all systems. These reduce the partial pressure of 
the condensing vapors and decrease the cor- 
responding saturation temperature. As collapse 
proceeds, the effect of these inerts increases 
until condensation is halted as T,,, -+ T,, where 
T, denotes the internal wall temperature. 

The outline of the solution for the temperature The effect of non-condensables in bubble 
field and the local gradients is presented in condensation has been extensively treated else- 
Appendix A. where [3-53. It suffices to note that in this case 

3.3 The collapse rate 
The heat balance at the interface along the 

line Y = 0: 

(R sin y)( R d 7) (24) 

yields the collapse rate for each bubble: 

sin 7 d ; 

where A,~ is the vapor density near the interface. 
The new radii of the bubbles in the train is 

now computed by averaging the collapse rate of 
bubble i moving at the time interval l/F to the 
i-l position (Fig. 1) i.e. : 

R?” 
I (Ri + Ri-1) 

I 1 
= Rp’d - F 2 

C26) 
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T, replaced T in equation (22) [and f&, = 
8, # 1, equation (23)] and affects the ensuing 
calculations based on it. For the simplest case of 
homogeneous distribution of the inerts inside 
the bubbles, the value of 0, is given by [3,4] : 

e Tw - L P” - B.: 
“=P- Tm=#?3- 1,/G t27) 

where the term l/G = p,/pL, due to the con- 
densed fluid which accumulates inside the two- 
phase bubble, vanishes for a single-phase bubble. 
/J = R/R,, and /II is the radii ratio of the final 
and initial bubbles in the column. In the absence 
of inerts 8, = 0 for the single phase bubble and 
/?/ = G-j for the two-phase bubble. For a given 
initial concentration of inerts in the incoming 
vapor, r (mole fraction): 

where ti is the specific gas constant Again .1/G 
vanishes for a single-phase bubble. Somewhat 
different expressions for fl/ and T, are obtained 
when a concentration gradient within the 
bubble is considered f5]. Note tbat in some 
cases it may be more convenient to obtain /I,, 
rather than r, experimentally. 

4. EXI’EWWNTAL 

The experimental setup shown schematically 
in Fig. 5, is a modification of the one used 
previously for single bubble studies f4,5,13 f and 
only the essential features are outlined here. 

The *apparatus included : (1) a condensation 
cell-a glass column surrounded by a square 
water-jacket, (2) bubble injection mechanisms, 
at the bottom, and (3) a movie camera. 

The continuous phase in the condensation 
column was either pentane or distilled water. 
Water was circulated in the square water jacket, 
in order to maintain the temperature of the 
column. This jacket also eliminated visual 
distortion of the bubbles. 

The pentane bubbles were injected into the 
bottom of the column through a capillary (B) 

r 

I I 

FIG. 5. Condensation test cell. 

passing a 7-cm layer of relatively hot mercury. 
(In some runs, liquid drops were injected at the 
bottom of the mercury layer.) The frequency of 
the bubbles was varied by means of pressure 
bellows, actuated by external pressure, and by 
using various capillaries All the relevant tem- 
peratures were measured and recorded with an 
estimated error of #05”C. 

The bubbles were photographed with a tine 
camera at a speed of 64 fps. With the relatively 
large bubbles and low AL\T* used here, the 
64 fps camera yielded some 20-30 data points 
per run. The collapse rates were obtained by a 
frame to frame analysis. The time-scale error 
is within -$6 set and the bubble dimensions 
within 2 per cent. 
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5. RESULTS AND DISCUSSION 

In order to establish the reliability of the 
outlined approach, the solution procedure was 
checked by solving for the condensation rate 
of a single bubble. Note that in this case the flow 
field program remains unchanged while the 
energy equation (equation 16) must be modified 
to include the unsteady state term (which does 
not appear in the periodic steady-state solution 
assumed for the continuous bubble train). As 
seen in Fig. 6 the results obtained here are in 

0.6 pentone - pentme 
Pe-~~ Jo = IO 

B 06 

0.4 

-This work 
__Imnberg and 

02 Sideman RI 

I.“0 

o-8 Pentme-water 

Pe?=2xlO’J0=lO 

0.6 

B 

0.4 

0.2 

0 I 2 3 4 

FIG. 6. Convergence test for single bubbles. 

excellent agreement with those reported by 
Isenberg and Sideman [3] for a single pentane 
bubble condensing in either pentane or water. 

The effects of the initial bubble size, type of 
of system and inerts content are essentially 
similar to those encountered in the earlier single 
bubble-condensation studies [3, 41. We shall 

therefore concentrate mainly on the effects of 
frequency on the condensation rate of a bubble 
train. 

A comparison between the results obtained 
here and the approximate “analytical” solution 
[6] for condensation of various bubble trains 
at different operating conditions is presented 
in Figs. 7 and 8. Also included in Figs. 7 and 8 is 
the curve for a single collapsing bubble at the 
same temperature driving force. Real time was 
used in the abcissa in order to render a better 
physical feeling. 

As seen from these figures-and others not 
presented here-the agreement between the two 
solutions is very good, particularly at frequencies 
above 10 bubbles per s. This is understandable 
in view of the simplified energy balance used in 
the analytical solution whereby all the heat 
released during the condensation accumuiates 
in the space between the consecutive bubbles. 
Evidently, this assumption is fairly good at high 
frequencies, but not atTow frequencies, when the 
bubbles are far apart. Note that the highest 
frequency used here, 30-31 bubbles per s, 
represents the limit at which the bubbles 
(Rd - 0.4 cm) touch one another, and coales- 
cence may be expected-at least near the in- 
jecting nozzle. 

It is interesting that at low frequencies, up to 

12-14 bubbles per s, the effect of bubble inter- 
action is noted only through its effect on the 
temperature field. The tailing consecutive bub- 
bles travel through the thermal field which was 
affected by the previous bubbles. Hence, the 
condensation rate decreases as compared with 
single bubble condensation, where the tem- 
perature driving force is unchanged along the 
bubbles path However, at higher frequencies, 
as the bubbles enter the wake region of the 
preceding bubbles, the flow field is also affected 
and VF, > U,. The increased convection en- 
hances the transfer rate. Thus, these two factors- 
the increase in the field temperature and the rise 
velocity-adversely affect the condensation rate. 
Figures 7 and 8 with F = 18 represent an inter- 
mediate case, and as can be seen. the condensa- 
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r 

--- _ Analytical 
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0 04 0.2 0.3 0 0.1 0.2 I 

Time. s Tima. s 

FIG. 7. Comparison of exact and approximate solutions, pentanc-pentane 
system. 

tion rate increases at higher frequencies (F = 26), 
approaching that of a single bubble In general, 
the effect of frequency is more pronounced in 
the presence of inerts, since they affect only the 
temperature field and have but little effect on the 
rise velocity. 

The satisfactory agreement between the exact 
and approximate “analytical” solution is highly 
rewarding in view of the complexity and tech- 
nical difftculties associated with the exact 
numerical solution. It is important to note that 
the “exact” solution for a continuous bubble 
train is made possibk by specifying a periodic 
steady state as well as a finite condensation time 
(= 99 per cent of maximum condensation pos- 
sible at infinite time). The bubble row thus 
becomes finite, though the bubbles are replaced 
periodically, and the solution for the flow field 

becomes possible. The number of bubbles in a 
row, N, is defmed by the relationship t = 
(N - 1)/F. Obviously, N is dependent on the 
actual operating conditions, namely AT*, F and 
the inerts content (or /l,) and a solution is sought 
for conditions yielding integer number of bubbles 
in a row. (Note that at a constant F a low value of 
N is analogous to high AP and a large N 
represents a low ATC.) In practice, however, 
the experimental data consists of AP, F and /If 
(but not N!) and an exact solution based on this 
information, though possible, is tedious and 
time consuming The “analyticaY solutioq 
on the other hand, does not require N to be 
a priori specified and one can therefore use it for 
comparison with the experimental data The 
good agreement between the two theoretical 
solutions justified this time saving procedure. 
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Fro. 8. Comparison of exact and approximate solutions, 
pentane-water system. 

The pertinent dimensions of the bubbles, 
obtained by frame-by-frame analysis of the 
tine-camera films, were fed into a data reduction 
computer program which tits the data to ex- 
ponential decay type curves. In the weighted non- 
linear least squares technique used, the residuals 
were weighted by calculated value based on the 
standard deviation of the measurements. 

As seen from Figs. 9 and 10 the agreement 
between theory and experiment is generally 
quite good. However, at higher frequencies the 
theoretical values are rather conservative. This 

PP 33-3 

F-13.08 

A~‘-3~tO”c 

PP 37-8 

F=14.5? 

AT=4-65 93 

n-, 
4 -0 323 

PP 37-l 

F-24.29 

AT==560 Oc 

0 

FIG. 9. Comparison.of theoretical and experimental results. 
~nt~e~~ne system. 

is ~doubt~ly due to deviation from the 
assumed axial-symmetry and larger (and pos- 
sibly different) interaction effects-than ac- 
counted for-as the bubbles approach each 
other at higher frequencies. This is manifested 
by the noted increase in vibrations at the bub- 
ble’s interface. Also to be noted is the difference 
between the theoretical and experimental curves 
at high inerts contents, particularly at the last 
condensation stages. This is due to the assumed 
homogeneous distribution of the non- 
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condensables within the bubble. As shown 
elsewhere [S] this cau be corrected by con- 
sidering a parabolic rather than an homogeneous 
distribution. 

Finally, it is important to note that the rela- 
tively small effect of the frequency on the 
conden~t~on rates, hence cond~sati~ height, 
of the bubbles in a bubble train is due to the 
fact that the (single) train is enclosed in an 
“iufmite”, heat absorbing, medium However, 
inpractice many adjacent trains are present and 
the temperature-increase along the column will 

PW 26-2 I 
/=lrl~if 

- Anolyttcal 
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FIG. 10. Comparison of theoretical and experimental 
results. pentane-water system. 
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be much more pronounced Moreover, the rise 
velocity will also be affected, usually decreasing. 
Thus, pronounced effects of frequency on the 
coflapse rate may be anticipate& 

6. CONCLUSIONS 

The conduction rate of a ~ntinuo~ bubble 
train rising from a single nozzle was solved by an 
iterative, simultaneous solution of the coupled 
flow and temperature fields. The reliability of the 
solution was demonstrated by its convergence 
to single-bubble condensation and by com- 
parison with another solution [3] and with 
experimental data. 

Frequency afTects condensation rate by two 
counteracting effects: the temperature field and 
the rise velocity. The former is affected by the 
presence of non~conden~bl~ whik the latter, 
which becomes significant only at frequencies 
above 12-14 bubbles per $ is independent of 
inerts. 

In general, at frequencies up to 20 bubbles 
per s, the collapse rate of a bubble tram is 
smaller than that of a single bubble, and 
approaches the latter at high frequencies How- 
ever, the effect of frequency in multi-train sys- 
tems is anticipated to be much larger, i.e. the 
collapse rate is much lower than that of a single 
bubble or even a (single) bubbk train.[l9]. 
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APPENDIX A 

The Solution of the Temperature Field 
III a Bnite difference form, using an implicit, backward 

difference technique, equation (2 1) becomes : 

iiSI-l,j+! + 6ei.j+1 +cei+l.j+l =' (A.1) 

where 

Equation (A.l), subject to the boundary conditions equation 
(23), is a diagonal matrix for each equipotential line. For 
the j + 1 line this matrix is: / \ /\ 

where 

(A.?) 

d’, = d, - a,&,: 4 = a, + c, 

For a constant heat flux boundary conditions i.e. the high 
frequency case, c’,( = a, + c,) replaces c, and d; = d, in 
(A.2). The whole temperature fteld is solved by solving (A.2) 
successively for each of the equipotential lines. 

Utilizing the geometrical relationship 

dT I dT dT 
dn *,=o 

= -$cos(9o - y) - dzcosy 1A.3) 

the local temperature gradient normal to the interface in the 
X-Y(or r-z) plane is given by : 

ar 

dnl,,,, = 

_ y(y - T,) a@ (U, Shy + U,COS7) 

---K D UP, 
(A.4) 

*t=o 

where the dimensionless gradient along the (r + 1) equipo- 
tential line is approximated by the Lagrange 3-point 
formula, i.e. 

de 1 
- 4 -l-3e,,,., +46,.j+1 - 6z.j+l). 
ati, *==o ZA$,) 

(A.5) 

Finally, the collapse rate, equation (2% is calculated by 

It= &S (COS yj - cos y,+ 1) lA.6) 

j=l 

where m/dn is the average temperature gradient on the 
interface between points j and j + 1. and where j = 1 
corresponds to the contact angle 7, and j = n corresponds 
to the separation angle y,. 

(a) 
(‘3 
(4 
(4 
(4 
u-l 

APPENDIX B 

Outline of Iteration Procedure 
Fix F; 
FixN; 
Estimate Rf, using the approximate solution [61: 
Calc. CJ’, by equation 19) for the assumed row: 
Calc. the flow field (sec. 2.4); 
Assume AT1, and solve for the temp. ticld (equation (21) 
and Appendix A) and collapse rate (equation A.6) : 
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(g) Caic. Rr’“, UJtGitiOn (26), and estabtish new row ; (i) Change N and repeat (c) to (h) ; 
(h) Repeat (d) to (f), if ncassary, for A?” so as to Satisfy ti) mange F and ref’eat (b) to @. 

(b). till convergence of RI : 

TRANSFERT THERMIQUE DE CONTACT DIRBCT AVBC CIiANGEMENT DE PHASE: 
CONDENSATION D’UN TRAIN DE BULLES 

R&WI&-La resolution des champs couples de vitesse et de temperature asso& a la condensation dun 
train de bulles B une ou deux phases est utilistt pour determiner le rayon de la huhc en fonction du temps 
fou de la hauteur), de la frbquena. de la tcmpkature et de la concentration en composant inerte. 

La validitt de la pro&he est dtmontrke par sa convergence P ftiquence nulle avec les autrcs solutions 
4~: condensation d’une bulle unique et par le bon accord du calcul avec Ies donnks expkrimentales. 

WARMEmERTRAGUNG FOR DIREKTEN KONTAKT BE1 PHASENmDERUNG: 
DIE KONDENSATION EINBR BLASENKETTE 

Z-&Die Lijsung der gekoppelten Ges&windigkeit~- und Tcrnperaturfelder bci der 
Kondensation einer einphasigen odar z~eiphasigen Blascnkette wird hemgezogen, um die R&en der 
Blaseu als tine Funktion der Zcit (oder Hi3he), der Frequenz, des treihcnden Temperaturgef”alles und der 
lncrtgaskonaentration zu erhalten. 

Die Zuverlitssigkeit des Llisungswegea wird gezeigt durcb die Konvergenz hai der Frequanz Null 
gegeniiber anderen LZisungen der Ein~i~~on~~tion und durch die gute ~instt~~g der 

berwimeten Ergebnisse mit experimentellen Daten. 

Amomqm-Pememe mamocmisamblx nonell; cnopocm n TeMnepaTypbr B cnyuae KOH- 
Aeacantni oxno~ HJIH AByxQiaeHoft qenorwrr nyamrpeg acnoribayeTcn ~rra Haxo2ftxerrwr paxkryca 
nyaxpel B aamicnMocTu OT spearem (mm ~hrcoTk4), 9acToTbl, TentnepaTypHor0 tianopa H 
Kon~eHTpa~M~ SrHepTHErx BemecTB. 

Cosna,r(eHxe HatineHrioro pemeriwi c AaHHwa, noayuetrHbr5ts apyrnnt~ MeToga~rr B 
CJryYae KOFlAeHCauWi OTAeSlbUOFO llyabtpR, H C eKCnepHMeATaJbFiblYH AaHHHMYr t’tOJWBep?K~aeT 

Aa.nemHOCTb npeAJlOHceRHOr0 MeTOAa. 
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