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DIRECT CONTACT HEAT TRANSFER WITH CHANGE OF
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Abstract—Solution of the coupled velocity and temperature fields associated with the condensation of a
single or two-phase bubble train is used to obtain the bubbles’ radii as a function of time (or height),
frequency, temperature driving force and inerts concentration.

The reliability of the solution procedure is demonstrated by its convergence at zero frequency to other
solutions of single bubble condensation and by the good agreement of the calculated results with experimen-

tal data.
NOMENCLATURE Pe,  Péclét number (= DUE /a);

A, matrix ; 0, point outside bubbles envelope:
A, constant; r, radial coordinate;
a, constant ; R, radius of bubble;
a, constant ; r., radius of contact area of wake and
B, constant ; tailing bubble;
B, radial distance vector; T, temperature ;
b, constant ; T,., approach temperature;
b, constant ; T*, saturation temperature, corrected for
c constant ; hydrostatic pressure ;
c, constant ; t, time;
D, center to center distances between t,, time to final condensation ;

bubbles; U,, velocity of rise of single bubble in an
d, constant; unbounded media ;
F,, wake velocity factor; UL, frequency-dependent velocity of rise:
F, bubble frequency; v,,  radial velocity component;
Fo, Fourier modules (axt/R3); v:,  axial velocity component ;
L intensity vector; X,  dimensionless axial coordinate (z/D);
Ja, Jacobno. [p, Cp, (T* — T )Ap, N]; Y, dimensionless coordinate (= r/D):
K,  distance between edge of line element z, axial coordinate.

and point in field ;
k,,  velocity factor; Greek letters
L length of line element ; o, thermal diffusivity, continuous phase :
m, index of reference element ; B, dimensionless bubble radius (R/R,);
N,  number of bubbles in a train; B;.  dimensionless bubble radius (R,/R,);
n, number of line elements ; 7, angular coordinate;
P, body point; 6, dimensional temperature (= (T~ T)’
Pe,. Péclét number (= 2R U¥ /a); (T* - T.):
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i density :

n, intensity of line element :

@, potential function ;

D, dimensionless potential function, equa-
tions (20}21);

v, stream function;

¥, dimensionless stream function, equa-
tions (20}+21);

Y., transformed dimensionless stream
function ;

& constant ;

g, constant ;

T, JaPe} F,.

Subscripts

0, lower bound (for frequency); initial

(radius);

1, leading bubbie;

2, tailing bubble ;

o,  infinity (approach or radial);

c, complete contact (angle);

£ final;

i index, no. of element; number of
bubble;

Js index, body point ;

A liquid, continuous phase;

L, condensed bubble, liquid;

M, apoint in flow field

m, mth line element ;

mp, relation between element m and body
point p;
n, number of elements, total ;
p. body point;
r, radial ;
s, separation (angle);
v, uncondensed bubble ; vapor;
w, wake ; wall;
z, axial.
Superscripts
F, frequency dependence;
0, edge of line element at L = 0;

L. edge of line element at L = L.
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1. INTRODUCTION

BuBBLE trains, in which the bubbles diminish in
size while in motion through a liquid, are
encountered in numerous engineering applica-
tions involving heat and mass transfer. Of
particular interest is the study of bubble con-
densation in two and three phase systems,
associated with the design of efficient exchangers
capable of heat recovery with small temperature
driving forces. These direct contact heat ex-
changers provide the advantages of smaller flow
rates of the transfer fluid, convenient separation
of the fluids, and very high heat-transfer co-
efficients. This mode of operation is applicable
to any pair of fluid systems, provided a suitable
immiscible transfer fluid is chosen.

Unlike condensation in a single-component
system (say, steam in water), where the con-
densing vapor merges with the surrounding
continuous liquid, the condensed vapor in these
immiscible systems (say, pentane or Freon in
water) remains within the confines of the bubble
wall. This sytem thus consists of the vapor and
two liquid phases. For ease of reference and in
order to avoid confusion when non-condens-
ables are present in the vapor, we denote these
bubbles in the two-fluid system as ‘“‘two-phase
bubbles”. By analogy, the bubble in a singie-
component system is denoted as a ‘‘single-
phase bubble”.

Practically all past studies relate to bubble
growth and collapse of a single bubble and with
only a few exceptions these studies are limited
to the radial motion of a stagnant bubble.

The first exact numerical solution for bubble
collapse in a single-component system, in-
cluding the effects of the translatory motion of
the bubble, is due to Wittke and Chao [1].
Following an earlier experimental study (2] a
general numerical solution for a ‘“‘two-phase
bubble” was presented by Isenberg and Sideman
[3]. For a “single-phase” bubble this solution
degenerates to the previous solution [1]. An
approximate analytical quasi-steady state solu-
tion for the condensation of single and two-
phase bubbles, including the effects of con-
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centration distribution of the non-condensables
within the bubble, was recently presented [4, 5].
The calculated results are in good agreement
with the experimental work of Isenberg [3]
and Moalem [4].

The present study deals with a train of bubbles
continuously originating at the same source.
Based on a simplified energy balance, an
approximate solution for the collapse rate of a
bubble in a bubble train was recently presented
[6]. The solution was obtained by treating one
bubble as representing the bubbles in the train,
and calculating the collapse rate for the fre-
quency-dependent rise velocity and the tempera-
ture driving force along the bubbie’s path.

While the flow field around a single unbounded
bubble can be solved independent of the tem-
perature field, the bubble train is a continuous,
infinite process, and requires a simultaneous
solution of the temperature and flow fields. An
iterative procedure is thus required: a bubble
train is assumed and the flow field is solved.
The ensuing solution of the energy equation
leads, through the collapse rate, to a new con-
figuration of the bubble train.

The first part of this work is therefore devoted
to the solution of the flow field around a specific
bubble train of decreasing radii (Fig 1). The
uncondensed bubble is at the bottom of the
column while the smallest bubble, at a finite
final condensation stage, is leaving the top.
Bubbles at intermediate condensation stages
are equally spaced in between these two posi-
tions. Hick [7] and Basset [8] presented a
solution for potential flow around two identical
solid spheres and Michael [9] solved for the
flow around a row of identical spheres. Herman
{10] and, more recently, Isenberg and Sideman
[11] presented solutions' for potential flow
around two vertically adjacent bubbles of
different radii, including radial motion of the
interface. Extensions of solutions of the ensuing
Newmann problem by the method of successive
approximations (negating harmonics on the
incompatible boundary conditions) to a multi-
bubble column is quite tedious and complicated.
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FIG. 1. Schematic presentation of a bubble train.

A new technique was utilized here which is both
faster and allows mapping of the whole flow
field.

2. THE FLOW FIELD

2.1 The bubble train

For a given bubble frequency F and given
temperature of the surrounding liquid, the
bubble train (Fig. 1) is defined, subject to the
following simplifications: (a) The instance of
any bubble detachment from the origin is taken
as zero-time. (b) The column consists of all the
bubbles present at time-zero, including the
highest bubble at its final condensation stage.
(c) The system is at periodic steady state, ie. it
repeats itself at time intervals of 1/F. (d) All
incoming bubbles move through the same path
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and reach the identical final condensation stage
(complete or partial condensation, depending
on the concentration of non-condensables).

2.2 Method of solution

For the purpose of the analysis the bubble
train is assumed to be stationary while the fluid
flows around it. This is permissible in view of
the simplifying assumption that the solution is
applicable to a periodic steady state. In other
words, the system is frozen at zero-time and
solved as a stationary system.

The potential flow model, adequately estab-
lished for flow around single gas bubbles [11],
is extended to the flow configuration at hand.
This is consistent with the recent study of Ishii
and Johnson [12] on flow in bubble swarms.
Thus, the solution is based on finding the proper
combination of hydrodynamic doublets (sources,
sinks) and dipoles which, combined with the
linear approach velocity Uf, yields the velocity
field in terms of the potential and stream fune-
tions around the axially symmetrical bubble.

It can readily be shown that the stream and
potential functions for a line element i, of
length L, located on the axis of symmetry z,
are given by [13]:

b, = - (K8 — KE] (1)
4n
and
n: . KE(1 — cosy)
¢ = 47 n K%(1 —cos y%) 2

where 5, denotes the intensity of the element per
unit length. K and KL are the distances from
points z =0 and z = L on the element i, at
angles y° and y&, respectively, to a point located
at a radial distance r from the z coordinate
(Fig. 2).

The contribution of an unperturbed uniform
flow field UL to the stream function at this
point is given by

Yoo = —3ULF (3)
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Body ponts

Line source /

Fi16. 2. Construction of streamlines trom hydrodynamic
line sources.

The shape of the column is determined by the
distance between the hydrodynamic elements
and their intensities under the constraints that
the sum of the intensities is zero and that the
sum of the overall stream function is nullified
on the interfaces.

Consider a succession of n line elements, each
of length L, but of different intensity, touching
each other head to tail on the z coordinate.
The stream function at “body point” P on
the interface, is obtained by summing the
contributions due to all n elements and the
uniform flow field. Hence,

1
Vo= Y, L IK — K] = $ U2 =0 )

i=1

where r, is the radial distance from the line of
symmetry to point P. Thus, for n elements and n
interfacial body points we obtain the following
n by n matrix:

Al =B (5
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where

| S
A=[Aij]=(Kf}—K.!} Z-’E;l,]=l,2,...n
LB 7'%
] oB=tUrl |
M r

The solution of the matrix under the constraint

I=

f‘. n; L; = 0 yields the intensity vector I which
i=1

is consequently used to calculate the stream and
potential functions at any point Q in the field.
These are given by:

n

Yo= D,

i=1

Kl — Klg] =3 ULy (1)

_ ;i del — COs yL) _ IJF

¢o = Z an " K%(1 = cosy°) Uaz(®)
i=1

where ry, is the radial distance from the line of
symmetry (z axis) to point Q, Ki, and Kj,
are the respective distances between the
two edges of line element i and point Q, and
—~ UF z is the contribution of the unperturbed
uniform flow field to the potential function.

2.3 The governing parameters

Solution of equations (7) and (8) requires the
knowledge of the following interrelated
parameters.

The approach velocity. Single bubble studies
[14] show that the velocity of rise of bubbles,
0-2-0-8 cm dia, is independent of their diameter.
Assuming that the same holds true for bubbles in
a train, the velocity of rise of the bubbles in the
column is taken to depend only on the inter-
action between successive bubbles, hence on
the frequency of bubble production, but to be
constant at each frequency.

With reference to Fig 3, the frequency
dependent rise velocity of a chain of bubbles,

—

LUy

74

Relative velocity,

Frequency, F,|/s

FiG. 3. Effect of frequency on rise velocity.

or the approach velocity, is given by [6, 13]:
UL \? R2
(E:) “R-ai-m

where r,, is the radius of the projected contact
area between the wake and the rear bubble of
radius R, (= Ry); F,, is the fraction of velocity
decrease in the wake region, given by [15):

F——
AL

where U, is the forward velocity in the wake,
corrected for internal circulation within the
wake. The numerical value for U, the free
rise velocity of a single bubble, is taken as that
corresponding to the lowest bubble in the
column, R, consistent with earlier studies
[3,4] indicating that bubble collapse does not

F, = (10)
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affect the rise velocity. It is noted, however, that
at large temperature driving forces, hence
higher collapse rates, the free rise velocity of the
larger bubbles in the earliest condensation
stages is not quite constant. Also, the free rise
velocity is not constant for condensation in
viscous media, such as pentane in aqueous
glycerine solutions.

It is noteworthy that the bubbles in an
ascending chain are not accelerating with
respect to a fixed coordinate system. Unlike
the pairs of bubbles in which the rear bubble
accelerates, collides and coalesces with the
leading bubble [16], no coalescence was noted
with pentane bubble trains condensing in
pentane, distilled water or aqueous glycerine
solutions.

The distance between the centers. The relation-
ship between the. frequency and the distance
between the bubbles is particularly useful since it
is directly associated with the final condensation
time t. For a constant Uf, calculated by
equation (9), the distance between two con-
secutive bubbles is given by:

1 F
D= F Uy, (11)
while the distance between the “initiai” and
“final” bubbles, of radius R, and R, respectively,
in a bubble train containing N bubbles, is given
by:

N
YD, =(N- 1)% U =t UE, (12)

or
t, = (N — 1)/F. (13)

The contact and separation angles. It is
reasonable to expect that the contact and sepa-
ration angles depend upon the distance between
the bubbles. For truly potential flow, these
angles are 0 and n, respectively, independent of
the distance. For viscous systems, the separa-
tion angle y, can be determined, at least ap-
proximately, by the well-known Reynolds num-
ber dependent correlations for flow around

A. ORELL and G. HETSRONI

solid spheres [17]. The approach angle y, is
determined with reference to the wake of the
preceding bubble and the distance between
the bubbles. Between these two angles, the
enveloping stream function ¥ = 0 coincides
with the walls of the bubble. Since the angles
vary with each system, they are determined
separately and treated as input data.

The radii of the bubbles in the column, R,,
are assumed for the first iteration, while for the
next iterations the radii resuiting from the
previous iteration are used.

2.4 The calculated flow field

The system of equations (5}H8) was solved
by utilizing Gause elimination technique. The
input data consisted of Ry, F, U, (hence
UL), ¥, 75 m, Land R . The number and length
of the line clements varied with R;, depending
on the length of the envelope (¥ = 0) between
7. and y, of each bubble. Double precision
techniques were employed, utilizing a PL/1
compiler. The program was checked by com-
puting the limiting case of a single bubble and
comparing with the analytical solutions,
whereby:

3
¢ =U,R ,:1+-21—(§>]cosy (14)
¥ = U,R? [1 - (g)l] sin? 7. (15)

Figure 4 represents the calculated axially sym-
metrical flow fields around a given bubble
train.

Whereas non-dimensionalizing equations (14)
and (15) yields a y—¢ network invariant in
R, the y—¢ net of equations (7) and (8) for the
bubble train varies with R; as well as with D.
Thus, a new network must be computed for
each change in R; or D. Furthermore, the
inverse transformation from y—¢ to r—z in the
single bubble case is relatively simple (elimina-
tion of y from equations (14) and (15) yields a
9th order equation in r which is routinely solved
[18]). However, the comparable transformation
to r-z from the ¢ plane utilizing equations
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Fig. 4. Calculated potential and streamlines of a given bubble train.

(7) and (8) is quite cumbersome, since there is
no way to eliminate one of the unknowns.
Moreover, values of ¢—/ and their derivatives
are needed for each of the iterations (see below)
required in the solution of the energy equation. A
special interpolation program, utilizing the
Newton-Raphson procedure and the Fibbo-
nachi search technique was used to map the
¢y plane, and an iterative procedure to re-
map the r—z plane was adopted [13].

3. THE TEMPERATURE FIELD

3.1 General

The solution of the temperature field requires
that a bubble train under given conditions be
assumed, calculating the flow and temperature
fields and, consequently, the heat fluxes and the
corresponding collapse rates. A new train is then
calculated and the iterative procedure is con-
tinued until the bubble train corresponds to that
calculated by means of the heat fluxes. The
results can then be presented as plots of bubble
radii versus time (or height), with the frequencies
and temperature driving forces as parameters.

3.2 The mathematical formulation
The steady state energy equation, in cyclin-
drical coordinates, for an axially symmetrical
case, is given by
oT oT l E . oT o
. rar( 5:)* TT]

U,E;'I" U,Ez‘ =

(16)

The solution of equation (16) requires the
explicit knowledge of the velocity components.
These may be taken from the solution for the
potential flow field However, no solution is
available at present for the comparable viscous
flow, which is encountered in the condensation
of two-phase bubbles. Following earlier single
bubble studies [3, 4], we introduce here the
velocity factor

k, = 025 Pr-* 17

designed to modify the convective terms so that
the resulting solution of the energy equation
would correspond to the actual viscous con-
vective terms. Note that k, = 1 for truly poten-
tial flow. The intrinsic merit of this approach
is that it allows for a general solution of the
energy equation for both potential and modified-
potential flows, and circumvents the need for
explicit velocity terms in the viscous flow field.

Utilizing the center-to-center distance between
the bubbles, D, as the characteristic length, we
define:

Y=rD; X=2z/D; J=jUE
¢ = ¢/ULD; ¥ =y/UyD?*;
Pe=ULD/x; A=JY?; (18)
B=20,/U5; C=JPek,
where
a 2 2
j= % +(% =v’ +0vZ. (19
ér o0z
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For large Péclét numbers (> 1000), the tangential
conduction, in the ¢ direction, is negligible
compared with the convective term. To obtain
better accuracy near the bubble, and reduce
calculations away from it, we introduce a step
transformation :

-y,
V=|-¥  —&¥, —~ P, )  for?, > ¥, (20)

forO< ¥, < ¥,

where P, is the value of P, at the end of the
linear zone and £ and { are arbitrarily chosen
values. Equation {(16) becomes:

3%0 a0 a8
A — PR, —
'a*}'3+B‘aq’,+Ca«p 0 (21)
where
T-T, o7\
O=poq AS A(W)~
o, 1-¢
B, =B+ 4—>")
, = B Frm + A’(‘P, — 'P,,) (22)

It is assumed that the heat transfer between the
bubbles and the continuous phase is essentially
done across the enveloping stream line ¥ = 0,
coinciding with the wall of bubbles. Thus;

¢ = ¢o, 9 = 0
¥ = o0, 00/0%¥ =0 (23)
¥ =0, 8, = 1 on the interface

8, = 0 between bubbles

where @, is the upper limit of the &-field, and
0, is the value of 8 on the inner stream line
¥ = 0. At very high frequencies, as D ~ 2R,,
it may be physically meaningful to assume that
the space between the bubbles in the column
contains fluid which is essentially at the satura-
tion temperature, ic. 6 =1 on ¥ = 0.

The outline of the solution for the temperature
field and the local gradients is presented in
Appendix A.

A. ORELL and G. HETSRONT

3.3 The collapse rate
The heat balance at the interface along the
line ¥ = 0:

7s

41 R? p,,‘wft%— = (2Hkg
dt J dni,-»
(R sin yRd ) (24)
yields the collapse rate for each bubble:
Kk fdT)
R= 1 sinydr @
2pv_w}.jdn g Srdr )

7e
where p, , is the vapor density near the interface.
The new radii of the bubbles in the train is
now computed by averaging the collapse rate of
bubble i moving at the time interval 1/F to the
i-1 position (Fig. I)ie.:

_l_(Ri + R;_y)
F 2 '

new __
i-1

Ry — (26)
The values thus obtained are then uscd again
as the initial radii for the next iteration and the
process is continued until the collapse rute
corresponds to the decrease in bubble size in
the train.

An outline of the general iteration procedure

is given in Appendix B.

3.4 Effect of non-condensables

In deriving equations (23) and on, it has been
assumed that the system consists of pure vapor.
and condensation proceeds at T* the vapor
saturation temperature, corresponding to the
system pressure. However, inert non-condens-
ables (usually air) are present in practically
all systems. These reduce the partial pressure of
the condensing vapors and decreasc the cor-
responding saturation temperature. As collapse
proceeds, the effect of these inerts increases
until condensation is halted, as T,, —» T, where
T,, denotes the internal wall temperature.

The effect of non-condensables in bubble
condensation has been extensively treated else-
where [3-5]. It suffices to note that in this case
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T, replaced T in equation (22) f{and 8, =
8, # 1, equation (23)] and affects the ensuing
calculations based on it. For the simplest case of
homogeneous distribution of the inerts inside
the bubbles, the value of 8, is given by [3, 4] :

__Tw*Tm_ ﬁs-ﬁ}
TT*-T, B-1/G

where the term 1/G = p,./p;, due to the con-
densed fluid which accumulates inside the two-
phase bubble, vanishes for a single-phase bubble.
B = R/R, and B, is the radii ratio of the final
and initial bubbles in the column. In the absence
of inerts B, = O for the single phase bubble and
B = G~* for the two-phase bubble. For a given
initial concentration of inerts in the incoming
vapor, I' (mole fraction):

_ RT**r N 1}'1
bh=lim-1otG

where R is the specific gas constant. Again 1/G
vanishes for a single-phase bubble. Somewhat
different expressions for B, and T, are obtained
when a concentration gradient within the
bubble is considered [5]. Note that in some
cases it may be more convenient to obtain f,,
rather than I', experimentally.

6.

27

(28)

4. EXPERIMENTAL

The experimental setup shown schematically
in Fig 5, is a modification of the one used
previously for single bubble studies [4, 5, 13] and
only the essential features are outlined here.

The .apparatus included: (1) a condensation
cell—a glass column surrounded by a square
water-jacket, (2) bubble injection mechanisms,
at the bottom, and (3) a movie camera.

The continuous phase in the condensation
column was either pentane or distilled water.
Water was circulated in the square water jacket,
in order to maintain the temperature of the
column. This jacket also eliminated visual
distortion of the bubbles.

The pentane bubbles were injected into the
bottom of the column through a capillary (B)

2313
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F16. 5. Condensation test cell.

passing a 7-cm layer of relatively hot mercury.
(In some runs, liquid drops were injected at the
bottom of the mercury layer.) The frequency of
the bubbles was varied by means of pressure
bellows, actuated by external pressure, and by
using various capillaries. All the relevant tem-
peratures were measured and recorded with an
estimated error of +0-05°C.

The bubbles were photographed with a cine-
camera at a speed of 64 fps. With the relatively
large bubbles and low AT* used here, the
64 fps camera yielded some 20-30 data points
per run. The collapse rates were obtained by a
frame to frame analysis. The time-scale error
is within #; sec and the bubble dimensions
within 2 per cent.
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5. RESULTS AND DISCUSSION

In order to establish the reliability of the
outlined approach, the solution procedure was
checked by solving for the condensation rate
of a single bubble. Note that in this case the flow
field program remains unchanged while the
energy equation (equation 16) must be modified
to include the unsteady state term (which does
not appear in the periodic steady-state solution
assumed for the continuous bubble train). As
seen in Fig 6 the results obtained here are in

Pentane - psntane
Pe=3000 Ja=I0
B
p; Q-4
e THiS WOTK
— - Isenberg and
Sideman (3]
) I
o-af- Pentane—water
Pex2xi0* Ja=l0
06 ~
gl X
\\ \\\\
AN ~~2T
04} -
AN B =04
\
\\ t
o2} \ ¥
=G
! L | @ |
o] 1 2 3 4 5

FiG. 6. Convergence test for single bubbles.

excellent agreement with those reported by
Isenberg and Sideman [3] for a single pentane
bubble condensing in either pentane or water.
The effects of the initial bubble size, type of
of system and inerts content are essentially
similar to those encountered in the earlier single
bubble-condensation studies [3, 4]. We shall
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therefore concentrate mainly on the effects of
frequency on the condensation rate of a bubble
train.

A comparison between the results obtained
here and the approximate “analytical” solution
{6] for condensation of various bubble trains
at different operating conditions is presented
in Figs. 7 and 8. Also included in Figs. 7 and 8 is
the curve for a single collapsing bubble at the
same temperature driving force. Real time was
used in the abcissa in order to render a better
physical feeling.

As seen from these figures—and others not
presented here—the agreement between the two
solutions is very good, particularly at frequencies
above 10 bubbles per s. This is understandable
in view of the simplified energy balance used in
the analytical solution whereby all the heat
released during the condensation accumulates
in the space between the consecutive bubbles.
Evidently, this assumption is fairly good at high
frequencies, but not at Tow frequencies, when the
bubbles are far apart. Note that the highest
frequency used here, 30-31 bubbles per s,
represents the limit at which the bubbles
{Ry; — 04 cm) touch one another, and coales-
cence may be expected—at least near the in-
jecting nozzle.

It is interesting that at low frequencies, up to
12-14 bubbles per s, the effect of bubble inter-
action is noted only through its effect on the
temperature field. The tailing consecutive bub-
bles travel through the thermal field which was
affected by the previous bubbles. Hence, the
condensation rate decreases as compared with
single bubble condensation, where the tem-
perature driving force is unchanged along the
bubbles path. However, at higher frequencies,
as the bubbles enter the wake region of the
preceding bubbles, the flow field is also affected
and UE > U,. The increased convection en-
hances the transfer rate. Thus, these two factors—
the increase in the field temperature and the rise
velocity—adversely affect the condensation rate.
Figures 7 and 8 with F = 18 represent an inter-
mediate case, and as can be seen. the condensa-
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tion rate increases at higher frequencies (F = 26),
approaching that of a single bubble. In general,
the effect of frequency is more pronounced in
the presence of inerts, since they affect only the
temperature field and have but littie effect on the
rise velocity.

The satisfactory agreement between the exact
and approximate “analytical” solution is highly
rewarding in view of the complexity and tech-
nical difficulties associated with the exact
numerical solution. It is important to note that
the “‘exact™ solution for a continuous bubble
train is made possible by specifying a periodic
steady state as well as a finite condensation time
(= 99 per cent of maximum condensation pos-
sible at infinite time). The bubble row thus
becomes finite, though the bubbles are replaced
periodically, and the solution for the flow field

system.

becomes possible. The number of bubbles in a
row, N, is defined by the relationship =
(N — 1)/F. Obviously, N is dependent on the
actual operating conditions, namely AT*, F and
the inerts content (or B,) and a solution is sought
for conditions yielding integer number of bubbles
in a row. {Note that at a constant F a low value of
N is analogous to high AT* and a large N
represents a low AT*) In practice, however,
the experimental data consists of AT*, F and f,
(but not N!) and an exact solution based on this
information, though possible, is tedious and
time consuming. The “analytical” solution,
on the other hand, does not require N to be
a priori specified and one can therefore use it for
comparison with the experimental data. The
good agreement between the two theoretical
solutions justified this time saving procedure.
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FiG. 8. Comparison of exact and approximate solutions,
pentane-water system.

The pertinent dimensions of the bubbles,
obtained by frame-by-frame analysis of the
cine-camera films, were fed into a data reduction
computer program which fits the data to ex-
ponential decay type curves. In the weighted non-
linear least squares technique used, the residuals
were weighted by calculated value based on the
standard deviation of the measurements.

As seen from Figs. 9 and 10 the agreement
between theory and experiment is generally
quite good. However, at higher frequencies the
theoretical values are rather conservative. This
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F1G. 9. Comparison of theoretical and experimental results,
pentane-pentane system.

is undoubtedly due to deviation from the
assumed axial-symmetry and larger (and pos-
sibly different) interaction effects—than ac-
counted for—as the bubbles approach each
other at higher frequencies. This is manifested
by the noted increase in vibrations at the bub-
ble’s interface. Also to be noted is the difference
between the theoretical and experimental curves
at high inerts contents, particularly at the last
condensation stages. This is due to the assumed
homogeneous distribution of the non-
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condensables within the bubble. As shown
elsewhere [5] this can be corrected by con-
sidering a parabolic rather than an homogeneous
distribution.

Finally, it is important to note that the rela-
tively small effect of the frequency on the
condensation rates, hence condensation height,
of the bubbles in a bubble train is due to the
fact that the (single) train is enclosed in an
“infinite”, heat absorbing, medium. However,
in practice many adjacent trains are present and
the temperature-increase along the column will
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FiG. 10. Comparison of theoretical and experimental
results, pentane-water system.
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be much more pronounced. Moreover, the rise
velocity will also be affected, usually decreasing.
Thus, pronounced effects of frequency on the
collapse rate may be anticipated.

6. CONCLUSIONS

The condensation rate of a continuous bubble
train rising from a single nozzle was solved by an
iterative, simultaneous solution of the coupled
flow and temperature fields. The reliability of the
solution was demonstrated by its convergence
to single-bubble condensation and by com-
parison with another solution [3] and with
experimental data.

Frequency affects condensation rate by two
counteracting effects: the temperature field and
the rise velocity. The former is affected by the
presence of non-condensables, while the latter,
which becomes significant only at frequencies
above 12-14 bubbles per s is independent of
inerts.

In general, at frequencies up to 20 bubbles
per s, the collapse rate of a bubble train is
smaller than that of a single bubble, and
approaches the latter at high frequencies. How-
ever, the effect of frequency in multi-train sys-
tems is anticipated to be much larger, ie. the
collapse rate is much lower than that of a single
bubble or even a (singie} bubble train.[19].
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APPENDIX A

The Solution of the Temperature Field
In a finite difference form, using an implicit, backward
difference technique, equation (21) becomes:

@0, 1, js1 + DO, juy + €Oy e =4 (A1)
where
3 A, B, _ ¢ 24,
(A 28y, Ap  (Ay)
- A, B, C
c = + — d= ——'Oi .
(AY.) 289, A
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Equation (A.1), subject to the boundary conditions, equation
(23), is a diagonal matrix for each equipotential line. For
the j + 1 line this matrix is:

b, ¢
a, b, ¢
ay by ;...
(A.2)
a, b
where
dy=d, — ab,: a,=a, + C,

For a constant heat flux boundary conditions, i.c. the high
frequency case, cj(= a, + c,) replaces ¢, and 4| = d, in
{A.2). The whole temperature field is soived by solving (A.2)
successively for each of the equipotential lines.

Utilizing the geometrical relationship

T oT oT
= —cos(90 — y) — ?cosy
z

e fA.
only,=0 Or 3

the local temperature gradient normal to the interface in the
X-Y(or r-z) plane is given by:

orT _ (T* - T,) 36 (v, siny + v,cosy)
nlyeo D &, Ut

where the dimensionless gradient along the (; + 1) equipo-
tential line is approximated by the Lagrange 3-point
formula, i.e.

00 ot (
5'1‘: We=0 - Z(AW:)
Finally, the collapse rate, equation (25), is calculated by

(A.4)
¥:=0

360, +40, .1~ 0.0 (AS)

R=—— — - +1)
cos7; — COS Yy
200 N 7] Ti+1
i=1

{A.6)

where dT/dn is the average temperature gradient on the
interface between points j and j + 1. and where j =1
corresponds to the contact angle 7. and j = n corresponds
to the separation angle y,.

APPENDIX B

Outline of Iteration Procedure
(a) Fix F;
(b) Fix N;
(c) Estimate R?, using the approximate solution [6]:
(d) Calc. U by equation (9) for the assumed row:
{e) Calc. the flow field (sec. 2.4);
(f) Assume AT*, and solve for the temp. field (equation (21)
and Appendix A) and collapse rate (equation A.6):
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{g) Calc. R¥*™, equation {26), and establish new row; (i) Change N and repeat {c) to (h);
{h) Repeat (d) to (f), if necessary, for AT* so as to satisfy (j) Change F and repeat (b) to (i).
(b). till convergence of R;;

TRANSFERT THERMIQUE DE CONTACT DIRECT AVEC CHANGEMENT DE PHASE:
CONDENSATION D'UN TRAIN DE BULLES

Résumé—La résolution des champs couplés de vitesse et de température associés & la condensation d’un
train de bulles & une ou deux phases est utilisée pour déterminer le rayon de la bulle en fonction du temps
{ou de 1a hauteur), de 1a fréquence. de Ta température et de la concentration en composant inerte.
La validité de 1a procédure est démontrée par sa convergence a fréquence nulle avec les autres solutions
Ae condensation d'une bulle unique et par le bon accord du calcul avec les données expérimentales.

WARMEUBERTRAGUNG FUR DIREKTEN KONTAKT BEI PHASENANDERUNG:
DIE KONDENSATION EINER BLASENKETTE

Zusammenfassumg—Dic Losung der gekoppelten Geschwindigkeits- und Temperaturfelder bei der
Kondensation einer einphasigen oder zweiphasigen Blascnkette wird herangezogen, um die Radien der
Blasen als eine Funktion der Zeit (oder Hohe), der Frequenz, des treibenden Temperaturgefilles und der
Incrtgaskonzentration zu erhalten.
Die Zuverldssigkeit des Lsungsweges wird gezeigt durch die Konvergenz bei der Frequenz Null
gegeniiber anderen Losungen der Einzelblasenkondensation und durch die gute Ubereinstimmung der
berechneten Ergebnisse mit experimentelien Daten.

NPAMON KOHTAKTHBLIN IIEPEHOC TEIJIA [IPY ®A30BOM
NPEBPAHIEHHH : KOHIEHCAUMA UEIOYKU NV3LIPER

Anporamus-—PelleHne B3AUMOCBASAHHMX HOJell CKOpPOCTH ¥ TeMIeparypH B CIy4Yae KOH-
ReHCALMHM OXHO- WA a8yXxPasHOMN NENOYKY ITysHpeld NCHOIL3YETCA AJIA HAXOKICHUA Pagnyca
nyaupell B 3aBUCUMOCTH OT BpeMeHM (MJM BHICOTH), YBCTOTH, TEMHEPATYPHOrO HANOPA u
KOHUEHTPAUHHN MHEPTHHX BeIecTs,
CoBnafieane HAKIEHHOIO peUIEBMA C AAHHHMH, NONYYeHHHMH HJPYTHMH MeTORaMH B
CIIy44ae KOHAEHCAUH OTAEABHOTO NYSLIPA, U C BRCIIEPUMEHTA ILHEIMY TaHHHMH TIOXTREPHALT
HAJeKHOCTh NTPENIOKEHHOr0 METOMA.



